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Absbact-An analysis is presented for laminar free convection of an absorbing-emitting gas in the region 
of the stagnation point of a horizontal cylinder. The analysis is formulated for a gray gas and a black 
isothermal cylinder. The parameters which govern the relative role of radiation to conduction and con- 
vection art varied over a range of representative values. The analysis has been limited to a Prandtl number 

of one. 

NOMENCLATURE 

absorption coefficient ; 
specific heat at constant pressure; 
exponential integral, 

1 

d 
c1 “-‘exp(- t/p)dp; 

dimension&s stream function, s+; 

acceleration of gravity ; 

Grashof number, gs(‘Tw i2 Tm’)R3 ; 

thermal conductivity; 
ka/4aT; ; 

Nusselt number, qR 
k(T, - T,); 

Prandtl number, pcdk ; 
conductive heat-transfer rate ; 
radiative heat-transfer rate ; 
total heat-transfer rate ; 
radius of cylinder ; 
dummy variable of integration ; 
absolute temperature; 
velocity component in x-direction; 
velocity component in y-direction ; 
coordinate along cylinder wall ; 
coordinate normal to cylinder wall. 

Greek symbols 

BY coefficient of thermal expansion ; 

;: 
T,/Tm ; 
aR JGr* ; 

4 CvlWr ; 
8, dimensionless temperature difference, 

T - T, 

T, - T, ’ 

I4 dynamic viscosity ; 

V, kinematic viscosity ; 

5, 
4aR2aT3,. 

pc,Gr*v ’ 

P9 density ; 

0, Stefan-Boltzmann constant ; 

7, optical distance, ay. 

Subscripts 

W, cylinder surface ; 

00, ambient. 

INTRODUCTlON 

THE INTERACTION of thermal radiation with 
convection heat transfer has recently attracted 
considerable attention. Except for an investiga- 
tion of laminar free convection from a vertical 
flat plate Cl], the previous investigations have 
dealt with forced convection. It can be demon- 
strated from the results of Cess [l] that radiation 
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interaction has a significant effect on free con- 
vection heat transfer. 

This investigation considers laminar free 
convection of an absorbing-emitting gas in the 
neighborhood of the stagnation point of a 
horizontal cylinder. In the particular situation 
studied, the only source of radiation incident 
on the surface of the cylinder originates from the 
fluid which is infinite in extent. Although the 
restrictive assumptions of a non-scattering gray 
gas, constant properties and a black wall were 
employed, this investigation serves as an excel- 
lent example for examining radiation-interac- 
tion effects in boundary layers. 

ANALYSIS 

Mass 
au av -+-_=o 
ax ay 

(1) 

Momentum 

au au gx @, - p) a% 
u;i;+vay=~ p +vayz (2) 

Energy 

aT k a2T 1 84, 
v---=----T--- 

ay PC, ay PC, ay 
(3) 

where the radiative heat transfer in the y- 
direction is given by [2] 

q, = 2u[T$5,(7) + * T?5,(7 - t) dt 
d 

Governing equations 
The physical model is illustrated in Fig. 1. T*E,(t - 7) dt]. (4) 

It is assumed that the flow is steady and laminar 

For simplicity, the majority of the results 
will be limited to small temperature differences 
(T,/T, + la). Thus, the linear equations are 
developed in the main body of the report and the 
corresponding nonlinear equations are given in 
the Appendix. Introducing the relation 

T* = 4T;(T - T,) + T4, 

The wall of the cylinder is black and at a uniform 

FIG. 1. Physical model. 

temperature. The absorbingemitting fluid is a 
non-scattering dilTuse gray gas with an index 

and, except for the buoyancy term, that the 
physical properties of the fluid are constant. 

of refraction of one. In addition, the analysis 
has been limited to the stagnation region of the 
cylinder and to cylinders of small curvature. 

r 

@4 ‘c T4 ) = L&(r) + 2 e(t)E,(r - t)dt 

w OD s 
0 

into equation (4), the linearized radiative heat 
transfer is given by 

In light of the assumptions, the conservation 
equations take the following form*: 

l These equations are written in terms of the lower 
stagnation region of a heated cylinder. For flow in the upper 
stagnation region of a cooled cylinder, the only modifica- 
tion necessary is a minus sign in the buoyancy term of the 
momentum equation. 

- 2 O(t) E,(t - 7) dt. (5) 
r 

Employing the derivative of equation (5) and 
the usual transformation, one obtains for equa- 
tions (2) and (3)* 

(6) 

’ Equations (6) and (7) apply to the upper stagnation 
region of a cooled cylinder and the lower stagnation region 
of a heated cylinder. 
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In the limit as c becomes very large and noting 
that for large t, E,,(t) w e-‘/t, one obtains for 
the linearized radiant heat transfer in the region 

I far from the wall* 
+ 0(t) E,(lr - tl) dt - 28-j = 0. (7) 

0 4* 4d0 
- --. (9) 

Except for the additional radiation term, the 
cr(T4, - T4,) = 3dr 

equations are the normal laminar free-convec- 
tion equations in the stagnation region of a Using the derivative of equation (9) in the 

horizontal cylinder [3]. The boundary condi- energy equation* One obtains 
tions are 

q,r = 0: df 8=10, f=-&=O 

The parameter 5 which appears in equation 
(7) denotes the relative role of radiation to 
convection. The relationship between r and 11 is 

where I( is a measure of the opacity of the bound- 
ary layer [2]. An additional parameter which is 
employed in radiation-conduction interaction 
problems is N which denotes the relative role of 
conduction to radiation. This, however, is not 
a separate parameter since 

(‘=Pr{N, 

Although the optically thick boundary layer 
is not normally encountered except under 
unusual circumstances, it is still of interest to 
consider the optically thick approximation for 
sake of completeness. Expanding 8 in a series 
about t = T 

wf = e(7) + gt-7)+... 

and substituting this expression in equation (5), 
one obtains the following relation 

4r 

4T: _ Td) = 2U7) Cl - WI 

_ 2&7l dr [$- e-’ + ZE.,(r)] + . . . . (8) 

(10) 

Equations (6) and (10) with (1 + 4/3N) l/Pr 
replaced by l/Pr combined with the previously 
given boundary conditions describe the non- 
radiating free-convection problem. Results for 
this problem exist in the literature for a limited 
Prandtl number range [4, 51. 

Heat trunsfer 
Conside~ng the conduction ~nt~bution first, 

it can be expressed in dimensionless form as 

Nl& 4cs do 

Grf = k(T, - Ta) Gr* = 
-- 

> dtl s,=o’ 
(11) 

The dimensionless radiative flux at the wall is 
obtained by evaluating equation (5) at r = 0 

m 

qm 
a(Tt - T4,) 

= 1 - 2 0(t) E,(t)dt. (12) 

0 

To properly observe the behavior of q, in the 
limits of large and small 5, it is convenient to 
write the total heat flux in two different dimen- 
sionless forms [2]. As the magnitude of r 
decreases, the role of convection increases and 
the problem reduces to the non-radiating free- 
convection problem. This suggests a dimension- 
less form similar to equation (11) 

l The consequences of this approximation will be 
discussed during the presentation of the numerical results. 
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0 de 

k(T, - T,)Gr* = - & > ,,=,, 
6 

+ !$[I - */tW)E,Wdr]. (13) 

A relation which is more useful for describing 
the behavior of q,,, for large values of r where 
radiation dominates the heat-transfer process 
is given by 

(IY r de --- 
M-4, - T4,)= > fWdtt ,,=o 

I) 

+ 1 - 2 0(t) E,(t)dt. 
s 

(14) 

0 

For the thick approximation, equations (12- 
14) reduce to 

4?w 4 de 

a(T: - T4,) = --> Xdrl ,,=o 
(15) 

4vR 
k(T, - T,) Gr’ = - (1 + g:>._. (16) 

(IY 
o(T: - T4,) 

(17) 

Method of solution 
The simultaneous solution of equations (6) 

and (7) was accomplished by an iterative forward- 
integration procedure on a UNIVAC 1107. In 
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order to remove the difficulty that E,(t) has a 
logarithmic singularity at t = 0. the radiation 
term in equation (7) was first integrated by 
parts. The starting values for forward integra- 
tion were obtained by a method outlined by 
Nachtsheim and Swigert [6]. The integration 
was repeated until successive iterations yielded 
df/dq distributions within 001. 

RESULTS AND DLSCUS!SION 

Results are presented for < values ranging 
from 005 to 101) and r values ranging from 
0001 to 100 for a Prandtl number of one. 
Using values of the Planck mean absorption 
coefficient given in [2], one finds that the above 
ranges for [ and < include values that could 
be reproduced without too much difficulty in 
the laboratory (c, r w 0.1). It should be pointed 
out that when speaking of a physical situation 
one has to be careful of curvature effects due to 
the increased penetration of the thermal layer. 

Figure 2 represents the effect of radiation 
interaction on the conductive component of the 
total heat transfer at the wall. For C 2 10, the 
results presented in the figure show an increase 
in conduction. Due to the slope of the radiative 
flux being positive near the wall, the radiative 
term in equation (3) behaves as a heat sink 
thus increasing conduction. For < < la. the 
presented results indicate a minimum in the 
conductive flux. For small <, the effect of the 
thickening of the boundary layer is greater 

- Exoci solution 

--- Thick limlf 

I 

o.30001 
I III I III1 I III I III 

001 @I I.0 IO-O 

t 

RG. 2. The effect of radiation interactIon on the conductive wall heat flux. 
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than the sink effect thus causing an initial 
decrease in - dO/dt&,. It is interesting to note 
that the thick approximation predicts the 
incorrect trend in the wall temperature gradient. 

The dimensionless radiative component of 
the total heat transfer is given in Fig. 3 as a 
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thick approximation overestimates the radiant 
flux by approximately a factor of two. 

The reason for the poor performance of the 
thick approximation can be obtained by exami- 
nation of equation (8). The quantity q,/a(T: - 
Tz) is well represented by - :dl3/dr in the 

06 
r 
I-? 

,: 5 06 

b 04 

02 

FIG. 3. The effect of radiation interaction on the radiative wall heat flux. 

function of C and r. The radiation transfer from 
the wall decreases with increasing opacity 
of the gas layer and as the role of radiation 
increases. The latter is due to the increased 
penetration of the thermal layer which acts as 
a radiation shield. Again, it is interesting to 
note the poor correspondence between the 
exact solution and thick approximation ; the 

outer portion of the boundary layer and drops 
to approximately - jdO/dr at the wall. Thus, 
near the wall, the thick approximation predicts 
the incorrect sign for the radiative term in 
equation (3) explaining the incorrect behavior 
of the conductive flux. 

Figures 4 and 5 show the effect of radiation 
interaction on the total heat transfer at the wall. 

IOO- 

- - Exocl 
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h 
OQVOX colnclde 
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O ‘0 001 
I III I III I III I III 
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t 

FIG. 4. The effect of radiation interaction on the dlmmsionless total wall heat 
flux. 
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- - Exact 
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t 

FtG. 5. The effect of radiation interaction on the dimensionless total wall heat 
IlUX. 

Figure 4 clearly presents the behavior of the 
total heat transfer for small 5. In agreement with 
equations (7) and (13), the total heat-transfer 
results approach pure free convection as { 
decreases. Figure 5 is a better representation of 
the total heat transfer for large values of r where 
radiation is the dominant component. Presented 
in this form, the total heat transfer decreases 
and the individual c curves converge as c[ 
increases. Although the thick approximation 
fails to predict the separate components of the 
total heat transfer, one observes from Figs. 4 
and 5 that this approximation gives an excellent 
prediction of the total heat transfer for large 
values of C. This observation suggests that the 
thick approximation, as in the case of conduc- 
tion-radiation interaction problems [7], is a 
correct asymptotic limit for the total heat 
transfer in convection-radiation interaction 
problems. This fact is substantiated analytically 
in reference [S] using a number of convection- 
radiation interaction situations as examples. 

Figures 6 and 7 illustrate the effects of 
nonlinear radiation on the individual heat- 
transfer components for [ = 0.5. The conductive 
component of the total heat transfer, Fig. 6, 

I I I I I 
03805 

I I i 1 1 1 
IO I5 

Y 

RG. 6. The dimensionless conductive wall heat flux as a 
function of T,/T, for [ = 0.5. 

behaves as a function of y in a manner similar 
to the optically thin results found for forced 
convection over a flat plate [9]. As would be 
expected, the effect of y increases as the participa- 
tion of radiation increases. The influence of 
y is as large or larger in most cases than the 



convection. Figure 7 presents the radiative 
component of the total heat transfer as a 
function of y. As before, the trends, except for 
the maximum which exists at the larger values 
of [, match those found for forced convection 
in [9]. The influence of y on the total heat 
transfer can be obtained by combining the 
results of Figs. 6 and 7 with equations (21) or 
(22). Although nonlinear results were obtained 
for only one value of [, the importance of the 
nonlinear nature of radiation in interaction 
situations is clearly shown. 

Y 

FlG. I. The dimensionless radiative wall heat flux as a 
function of T,/T, for i = 0.5. 

influence of interaction relative to pure free 
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APPENDIX 

The nonlinear radiation equations corres- 
ponding to equations (5), (7). (12), (13) and (14) 
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4nv 1 

a(T$ - T4,)=(y4 

4. J. C. Y. KOH and J. F. Patce, Laminar free convection 

are 

(Ir 2 

o(TP; - T4,) = (r4) 
I 

Y%(r) 

1) + l]* E2(r - r) dt 

- 
I 

[&Y - 1) + l]” E&t - r)dt 

r 

OD 

+ 
s 

[6(y - 1) + 13” E47 - tl)dc 

0 

(18) 

(19) 

(20) 
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qJ 
k(T, - T,) Gr’ = 

Pr5 
+4&p- 1) y4 

x E,(t)dt (21) 

4w GUY-1) de 
a(T4, - 7-4,) = - @WY4 - 1% 

P 
1 

+ 
(v4) 

[e(y - 1) + l-J4 

0 

x E,(t)dt . (22) 

The above equations apply to the upper 
stagnation region of a cooled cylinder (y -C 10) 
and the lower stagnation region of a heated 
cylinder (y > 1 .O). As in the linear case, the 
radiation term in equation (19) was first in- 
tegrated by parts to remove E,(t). It should be 
pointed out that when numerically integrating 
equation (18) to a large but finite value of T, 
care must be exercised to be sure that all con- 
tributions from the second integral are taken 
into account. 

R&au&-- On presente une thtorie de la convection naturelle laminaire d’un gaz absorbant et tmetteur 
au voisinage du point d’arret d’un cylindre &auf% horizontal La thtorie est formu& pour un gaz gris 
et un cylindre noir isotherme. On fait varier lea parambtra gouvernant le rdle rclatif du rayonnement par 
rapport g la conduction et ?I la convection dans une gamme de valeurs reprtsentatives. On a limit6 la 

thtorie B un nombre de Prandtl &gal il l’unite. 

Zusammenf~--Fiir die laminare freie Konvektion eines absorbierenden-emittierenden Gases im 
Bereich des Staupunktes eines beheizten waagerechten Zylinders wird eine Analyse gegeben. Diese Analyse 
beruht auf der Annahme eines grauen Gases und eines schwarzen isothermen Zylinders. Die tiir das Ver- 
hlltnis von Strahlung zu Leitung und Konvektion entscheidenden Parameter wurden im Bereich 

reprlsentativer Werte variiert. Die Analyse ist auf die Prandtl-Zahl eins beschrtinkt. 

AHIiWmqsui-flaeTcfl aHiliIK3 Zlfl JIaMMHapHOti CB060)JH08 KOHBeKlViH IIOl'JIOUR-UO~el3- 

5fanyqalowero raaa s6nHan nepegaeft KpWrWtecKoft TO~KH HarpeToro ropHaotiTanbIior0 
UwnHHnpa. 3mara c@opmyawpoaasa gnfl ceporo raaa w YepHoft HaoTepMwqecKoft cTeHKIi 
~HJIHHJgx3 w gm2na Pc = 1. llapamerpbt, XapaKTepwayroqHe BKX~ TenzroBoro AanyqeHHft 
IlO CpaBHeHMlO C TWIJIOIIpOBO~HOCTbK, H KOHBeKWWft, BapbMpyIOTCR B IIIHPOKOM ~HaIW3OH0 

COOTR&TCTBJ'KJIIIWX atta9eHHlt. 


